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Double resonance in cyclotron resonance masers
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In many cyclotron resonance masers a beam of gyrating electrons excites standing waves in resonators. Such
waves can be represented as a superposition of forward and backward waves that have opposite Doppler shifts
of the operating frequency in the reference frame moving with electrons. Correspondingly, for certain axial
wave numbers both forward and backward waves can be in cyclotron resonance with gyrating electrons but at
different cyclotron harmonics. The theory describing the interaction between electrons and the resonator field
in the case of such a double resonance is developed. It is shown that this double resonance can be beneficial
when the device operates at symmetric modes while in the case of operation at nonsymmetric modes it always
lowers the efficiency[S1063-651X98)02407-9

PACS numbdps): 52.75.Ms, 84.40.1k

[. INTRODUCTION electrons: the forward wave is at teth harmonic while the
opposite one is at thes{-1)th or higher harmonic. This case

Cyclotron resonance maseiSRMs) are known as pow- s illustrated in Fig. 1. Such an operation occurs when the
erful sources of coherent millimeter- and submillimeter-ratio of the resonator length to the wavelength relates to
wave radiatiori1,2]. The most advanced group of CRMs are the axial index as
gyrotrons or gyrodeviceE3]. Currently, free-running gyro-
tron oscillators are widely used for electron cyclotron plasma L 2s+1
heating and current drive in controlled fusion react@se, XT3 Bal 2
e.g., Refs[4] and[5]) and for material processin@]. Gy-
roklystrons driven by relativistic electron beams are unde

development for future(TeV scale linear colliders [7]. Here B,q is the initial axial velocity of electrons normalized

W o e : to the speed of light. The corresponding Doppler upshift of

eakly relativistic gyroklystrons operating at voltages be- ; .

low 100 kV have been developed for radar applicatits the operatmg frequency with respect to the cyclotron fre-
quency is

10]. There is also remarkable progress in the development 0
wideband gyro-traveling-wave tubésee Ref[11] and ref-
erences therejn w _2st1

In the process of this development practically all of the Q 2
most important issues for gyrotron operation have been stud-
ied theoretically. Some such results in the theory of weaklyNote that the condition of the double resonance given by Eq.
relativistic gyrotrons can be found in Refgl], [12], and  (2) can be realized in the case of fast wavés=(l /L
[13]. (For recent progress in this field see biennial speciak w/c) only when the electron axial velocity is large
issues on high-power microwave generation of the IEEEenough:
Transactions on Plasma Science; the latest issue is men-
tioned in Refs[5] and[7].) The fundamentals in the theory
of relativistic CRMs are given in Ref14]. Recent progress Frequency (@)
is reviewed in Ref[15]; in particular, Ref[15] briefly men- A
tions one special case of interaction of gyrating electrons
with a resonator field at two cyclotron harmonics simulta-
neously, in contrast to conventional cyclotron resonance at
only one harmonic.

To explain this case let us consider a resonator field with
a sinusoidal axial structuré(z)=sin(=#zL); herel is the
axial index andL is the resonator length. This field can be
represented as the superposition of two opposite waves with
the axial wave numbels,= =1 7r/L. Substituting these axial
wave numbers into the cyclotron resonance condition

3

w=(s+1)Q- kaZ

/|

Axial wave number (kz)

w—kv,~sQ 1)

(where w and Q) are, respectively, the wave and cyclotron

frequenciesp, is the electron axial velocity, and is the FIG. 1. Dispersion diagram illustrating the double resonance of
cyclotron resonance harmonic numpeme can readily find  one resonator mode formed by two traveling waves with an electron
that both of the opposite waves may be in resonance witheam at two cyclotron harmonics.
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PRE 58 DOUBLE RESONANCE IN CYCLOTRON RESONANCE MASERS 1003

Here, the components of electron momentum are normal-
ﬂzo>m- 4 ized tomc, the axial coordinate is normalized tow/c, the
resonator field amplituda is normalized tee/mcw, « andh
For the simplest case of the forward wave interaction at th@re, respectively, transvere and axialk, wave numbers
fundamental harmonics& 1) Egs.(2)—(4) are reduced, re- normalized tok=w/c, u is the ratio of the nonrelativistic

spectively, toL/A=(2)B,ol, w/Q=2, and B> 1. cyclotron frequency to the operating frequengysk, a is
’ 270 2 20 3 the Larmor radius of electrons normalizedkto (p can also

It is expedient to recall that a gyrating electron can Ioseb defined / lowl ble phases)
all of its kinetic energy in the process of interacting with an e redefined asep, /u), slowly Va“‘”? e phases); =t
k,z— 6 and ¥,=wt+k,z—26 describe the departure of

electromagnetic wave when the axial phase velocity of this_
wave normalized to the speed of light is equa[16] the forward and opposite waves, respectively, from the exact
cyclotron resonance, artlis the electron gyrophase. Factors

12 L, andL,, to be discussed in the Appendix, describe the
transverse structure of the Lorentz force with which, respec-
tively, the forward and opposite waves act on electrons. In
the case of a thin annular electron beam interacting with the
TEq,, mode of a cylindrical cavity

(1+a?)(y—1)
vot1l

Herey, is the initial energy of the electron normalized to the
rest energy and=p, o/p,o is the ratio of the initial compo-
nents of the electron momentum. As one can easily find, this
condition of complete deceleration of one electron is consis-
tent with the condition of the double resonande/\
=(3)B,0l, when aZ,=2+3ly, and yo>3. The latter im-
plies an operation at voltages above 250 kV. Note that th
condition of the double resonance at fast way&g> 3, for
a= ayy Meansy,>3, i.e., voltages above 150 kV. Fey,
>1, Eq.(2) givesL/A>1/2, which in principle can be real-
ized at any axial index. Note that these simple estimates
allow one also to evaluate the number of electron orbits i
the interaction spaceN=QT/27, where T=L/v,, is the

Ls:JmIs(kLRg)éi(mIS)l//- 9

HereRy and are polar coordinates of electron guiding cen-
éers Certamly, one from Eq$5) (7), and(8) can be elimi-
nated sincey’=1+p?+p2. We presented above all three
just for the completeness of our consideration. In the absence
of electron velocity spread at the entrarnge, p,, and vy
obey the following boundary conditiong, (0)=vo8, 0,
rPz(O)zyo,[s’Zo, v(0)=1vy,. The boundary condition for the
gyrophased in the gyromonotron i9(0)= 6, where the ini-
electron transit time through the resonator. As follows fromtial 9yrophased, is homogeneously distributed from O tar2
Egs.(2) and (3), N=1, i.e., under conditions of the double In any gyrodevice with electron _prebunchlng the gyrophase
resonance the number of electron orbits is equal to the axidlt thg entrance to the output cavny_d_epends on the prebunch-
index of the resonator mode. ing h|st9ry. Th|§ issue yV|II be specified belqw.

This simple qualitative analysis indicates some specific The interaction efficiency can be determined as
features of the double resonance at different harmonics that
may occur in CRMs in the process of interacting with one 1 jz” 1 JZW Yo~ 7( ) 4ol g 10
resonator mode. The theory of this phenomenon is developed T ow o |2m Yo— o[ - (10
in this paper, which is organized as follows. In Sec. Il a
general formalism is describéthe derivation of correspond-
ing equations is given in the Appendidn Sec. Il the re-
sults are presented and discussed. Section IV contains t
summary.

Here the averaging ovet, means the averaging over initial
Ig‘%;rophases in one beamlet, the averaging aveneans the
eraging over all beamlets having different azimuthal coor-
dinates of guiding centers.
Using Eq.(9) one can introduce the normalized amplitude
F=iA|L,|//2« and phase®;=;—(m—1)y. (Without a
As will be shown in the Appendix, the electron motion in lack of generality we will consider the TE mode rotating in
the case of the double resonance at two different cyclotrothe same azimuthal direction as the electron gyration. In the
harmonics can be described by the following equations: ~ case of a symmetric Tfg mode this does not play any role.
4 Correspondingly, in Eqg55)—(8) the ratio|L,|/|L,| can be
P i , P9 denoted a®& and the phase of the last terms in the right-hand
dz  3kp, ReliA[J1(p)L1€"1—25(p)Lo€"2]}, (5) sides of Eqs(5)—(8) can be rewritten as

Il. GENERAL FORMALISM

do u

dz p, B 3kBP,L

ReA[[pJi(p)]' L =¥,— (M—2)y=3K,z— ot+29;+ my

zdz
—[pJé(p)]’Lze"??]}, (6) =3hﬁz— fo E+201+m¢. (11
dp._ hA 4 1014 3! 19 Equation(11) shows that in th f ting at t
4z = 2xp 1(p)L1e'"1+35(p)Le' 2]}, (7) -qua ion(11) shows that in the case of operating at symmet-
z ric (m=0) modes the second averaging in EL) is redun-
dy B dant since all beamlets are in identical conditions while for
L

Re[iA[J}(p)L e ?1—J}(p)L,e?2]}. (8)  Operation at nonsymmetric modes it can be very important.

dz  2«p, In new notations Eq95)—(8) can be rewritten as
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dp, 2 ) " ) " lows from the condition of double resonantes 1/383,9 and
dz " 38 Re[F[Ji(p)e'"1—2RI(p)e'’2]}, (12) L is determined, in accordance with B@), by 3,0 and the
z axial index of the modd,.

do u

— : ’ I Al
9z b 3pp. Re[—iF[[pJi(p)]' €™ Ill. RESULTS
, . The double resonance interaction was studied for a
—RIpIy(p))'e2]}, (13 500-kV electron beam with the orbital-to-axial velocity ratio,
q 8 a=1.5. The interaction with modes having two, three, and
Pz_ AL y T ' P9 four axial variations(I=2, 3, and 4 was analyzed for the
dz =h B, Re[FLJi(p)e™ i+ Jp(p)Re 2]}, (14) case of a nonprebunched electron beam and the case of bal-
listic prebunching. The latter implies a weak modulation in
y B, , » , » electron energies in the first resonator followed by a long
a5, Re(F[Ji(p)e'"1—RL(p)e'’2]}. (15  drift section in which this modulation causes significant or-
z bital phase bunching. Correspondingly, the boundary condi-
tion to Eq. (19 for the electron energy was written as
v(0)= 1y, and to Eq.(2) for the phase as

Here, the primes fof); andd, are omitted. To make this set
of equations self-consistent we should replace (E8) for 6
by the following equation ford, :

1&1(0):190+q Sin 190, (21)
%z i { S+ 1 (1— &) +M(i— 1)] where the bunching parametgr(see, e.g., Ref.12)) in the
dz B, 3 Bzo Yo Y case of a nonprebunched beam is equal to zero. We analyzed
the operation at both symmetricn&0) and nonsymmetric
+ Re[iF[[pJi(p)]'e'™r (m#0) modes. The interaction length was determined by
362P. Eq. (2) for s=1 and B,, defined byV, and « specified
—R[pJi(p)]' e 2]}, (16  above:L/A=0.72. The efficiency given by Eq(10) was

calculated as a function of the field amplitugédor different
where 8=1—hg,o— ul v, is the initial mismatch of the cy- values of the ratio of coupling co_efficierR, and f.or.eackF
clotron resonance for the forward wave and take into accourR"dR the cyclotron resonance mismatshwas optimized for
that the relation betweett,; and ¢, is given by Eq.(11). maximizing the efficiency. _

We can also go one step further and, assuming that the Results are presented in Figs. 2 and 3, which correspond,
argumentp in Bessel functions is small enough, expand'espectively, to two and three axial variatids 2 and 3 of
these functions ad,(p)=(1/n!)(p/2)". Then, after intro- the resonator mode. I?a@, (c), and(e) mt_hese two flgures
ducing F’=F/2, R'=«R (primes are omitted below we correspond to operation at the symmetric mode while cases
reduce Eqs(12), (14), (15), and(16) to (b), (d), an_d(f) co_rrespond to nonsymmetric modéke I_at-

ter set of figures implies double averaging in EtQ) while
dp, 1 2 _ the former corresponds to the single averagifgrts(a) and
—_ = Re{ F(— g1 R,Ble"’z) , 17 (b) correspond to the nonprebunched electron beam, @rts
dz B, 3 and (d) correspond to the bunching parametgr 1, and
parts(e) and(f) correspond ta=1.8.(This value is close to

%:h ﬁ Re{F ity § RB e“’Z) (18) the optimum for a one-cavity prebunching for operation at
dz B, 4 Tt ’ the fundamental resonance; see, e.g., Réfsand[12].)
The results presented in Figs. 2 and 3 demonstrate that in
dy B, the case of operation at symmetric modes the double reso-

FE B, R%F(e‘ﬂl— ; Rﬂle'ﬁZ) ) (199  nance can improve the efficiency when the coupling to the
z opposite wave is not too stronRE 0.2—0.4). This effect is
better pronounced at small values of the bunching parameter
ﬂzi +} (1_&)+E (1_2) (g=0 and 1.0. For the optimum bunching parameteq (
dz g, 3 Bl 3 0% =1.8) the maximum efficiency for the nonzeRjs is ap-

proximately the same or smaller than fa=0. The maxi-

]' (20) mum efficiency of interaction of the prebunched=(1.8)
electron beam with modes having two and three axial varia-
tions is, respectively, 38% and 45%. We also studied the

These equations contain the same three parameters thgeration at the mode with four axial variations and found
describe a single-resonance interaction with one resonatdhat in this case the maximum efficiency is 46%. Since the
mode (see, e.g., Refl1]): the rf field amplitudeF, the cy- maximum efficiency in the last two casés=3 and 4 was
clotron resonance mismata$) and the resonator length.  approximately the same, we did not analyze the interaction

They also include the paramet®; which determines the with modes having a larged ¥4) number of axial varia-

ratio of coupling coefficients to the opposite and forwardtions. Relatively small changes in the efficiency due to the

waves, and the initial components of the electron velocity additional resonance can be explained by the fact that, as our

Bo and By [702(1—ﬂf0—,8§0)*1’2]. Note that, as fol- calculations showed, the parameters optimal for the efficient

1 [ (2. :
+p—R+F(§e“91—Rﬁie“’2)

1L
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FIG. 2. Operation at a mode with two axial variatiofa), (c), and(e) correspond to the symmetric T mode (n=0); (b), (d), and

(f) correspond to nonsymmetrien 0) modes. The bunching parameters @rand(b), (c) and(d), and(e) and(f) are equal to 0. 1.0, and
1.8, respectively.

interaction with the backward wave differ significantly from  The effect of electron velocity spread on the efficiency of

the parameters optimal for the forward wave interaction. double resonance interaction was also studied. We consid-
The double resonance in the case of operation at nonsyngred the case when a monoenergetic electron beam has a

metric modes, as follows from casés, (d), and(f) shown  spread in pitch ratiosy's, which is typical for the beams

in Figs. 2 and 3, always only reduces the efficiency in comformed by magnetron injector electron guns. This spread was

parison with a single resonance interactid®=(0). More-  modeled by a top hat distribution

over, at large amplitudes of the resonator field it causes the

appearance of reflected particles since some electrons lose

their axial momentum completely in the process of decelera- const forap—V3Aa<a<agt+v3Aa

tion. Certainly, the absolute values of the efficiency can be fla)= 0 for a<ag—V3Aa, a>agtVv3Aa,

enhanced when two or more prebunching cavities are used

(see, e.g., Ref16]). where the factonv3 ensures that\a is the rms spread in
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FIG. 3. Operation at a mode with two axial variatiofa, (c), and(e) correspond to the symmetric T mode (n=0); (b), (d), and
(f) correspond to nonsymmetrien 0) modes. The bunching parameters @rand(b), (c) and(d), and(e) and(f) are equal to 0. 1.0, and
1.8, respectively.

pitch ratio. The results of calculations done for the 10% Now let us discuss the relation between the optimal field
spread have shown that a double resonance operation at syamplitudeF (which can be found from Figs. 2 and &nd the
metric modes is as sensitive to the velocity spread as a singl¢ breakdown field. The normalized amplituBieused in Egs.
resonance interaction. For instance, the efficiency of the17)—(20) is equal to

double resonance operation at a mode with two axial varia-

tions excited by a nonprebunched electron beam decreases 1 eA

from 24% to 199 R=0.2; cf. Fig. Za)] while the efficiency Ji(k,Ry) —— '
of the single resonance operation in the same device with 4k McCw
R=0 decreases from 21.2% to 15.6%. On the contrary, the

double resonance operation at nonsymmetric modes is mu@nd its optimal value, as follows from Figs. 2—4, is on the
more sensitive to the spread: for the same paramdters order of 0.1.(Depending on other parameters, it varies ap-
=2,9=0, R=0.2) the 10% spread decreases the efficiencyproximately from 0.05 to 0.15.The normalized axial wave
from 19.1% to 12.4%. numberh in the case of the double resonance with a 500 kV,

(22
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a=1.5 electron beam is equal to 0.694=£1/35,5). Corre-  cavities[20].) Then, using Eq(23) for the optimal field am-
spondingly, the normalized transverse wave numiaer plitude one readily gets the following estimates for the re-
=\1-h?is equal to 0.72. Let us also assume that the bearjuired Q factors:Qoy =77, Quy=145.
radiusR, corresponds to the maximum of the Bessel func- Before closing this section, let us also briefly discuss the
tion J;(k, Ry)=0.58. This gives for the last term in E2) issue of mode competition. Certainly, in the case of opera-
eAm,.cw=0.5. From here the optimal field amplitude tion at the lowest symmetric modes the spectrum of modes
equals differing in transverse indices is well rarefig¢id contrast to
high-power, long-pulsed gyrotron oscillators; see, e.g., Ref.
[4]). However, the issue can be a competition between
modes having the same transverse structure but different
axial indicesl whenl is large. To evaluate the frequency
At high enough frequencyf& 10 GHz) the rf breakdown separation between such modes let us consider the case stud-
field in the continuous wavécw) regime can be approxi- ied above: a mode with three axial variations is excited by a

Agp MV/m) =

Ncm) (23

mated(see, e.g., Ref.17]) by a simple expression: 500 kV, a=1.5 electron beam. As one can find using Eq.
(2), the frequency of this mode is 1.89 (where w,. is the

137 cutoff frequency while the frequencies of modes with two
Epr,oW(MV/m)=25yf(GHz zm- (249 and four axial variations are equal to 1d9and 1.6%.,

respectively. So, the frequency of the closest mode is about
From here it follows that the optimal amplitude does not14% apart from the operating frequency. At the same time,
exceed the breakdown field only at wavelengths longer thaf@ Self-excitation band being estimated as/2)T™ " [1]
1.36 cm. Note, however, that in many experiments it wadwhereT is the electron transit time introduced in Sekisl
shown that in pulse operation the breakdown field is mucrsmaller than 6%. This allows us to conclude that the mode
larger than in the cw regime. This allowed Wilsphg] to ~ Competition should not be a severe problem for double reso-
approximate the dependence of the breakdown field on thBance operation.
pulse durationr (us) by the following equation:

IV. SUMMARY
. (25

4.5
E,=E 1+ . _ .
br br‘”( 714 The formalism describing the simultaneous double cyclo-

tron resonance interaction at different harmonics between the

So, for instance, for=1 us (which is a typical pulse dura- heam of gyrating electrons and one resonator mode was de-
tion of microwave sources intended for driving the linearyeloped. It was shown that in the case of operation at azi-
colliders the breakdown field is more than five times larger muthally symmetric modes the efficiency of the double reso-
than that given by Eq24). This pushes the boundary of the nance interaction can be higher than that in the standard case
wavelength region of stable operation to short millimetersof a single resonance interaction. For instance, for an opti-
Note also that near the wall surface the electric field of symmally prebunched electron beawne-cavity prebunchingt
metric modes is much weaker than in the interaction regiortan reach 46%. In contrast, in the case of operation at non-
that mitigates the breakdown problem. symmetric T, , modes(with m#0) the additional reso-

For practical reasons, it makes sense also to estimate ﬂﬂ%nce p|ay3 a’destructive role On|y, especia”y when the ve-
resonatorQ factor required for the generation of a certain |ocity spread is significant. The estimates show that the
microwave powerP;, with the efficiency calculated above. optimal amplitude of the resonator field required for efficient
Let us assume that the device should produce a 100 MWperation is on the order of the breakdown field. Neverthe-
output power, which is the goal of the present program foress, at least for a short pulse operation, the optimal field at

the development of relativistic gyroklystrons for future linear all reasonable frequencies is smaller than the breakdown
colliders [7,19. (For 500 kV beam voltage and 40% effi- |imit.

ciency it implies a 500 A beam currentn the steady state,

the rf power extracted from the beam is equal to the power of

microwave losses«/2Q)A?N, whereN is the norm of the ACKNOWLEDGMENTS
operating mode and the losses are mainly determined by the

diffraction of radiation into the output waveguide. Therefore, 1S Work was supported by the U.S. Department of En-
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To calculate the norm, one should take into account the ex- APPENDIX

pressions for the electric and magnetic fields given in the Here, we derive equations for electron motion in CRMs in

Appendix by Eq.(A1) and the fact that the normalized axial the case of double resonance at different cyclotron harmon-
and transverse wave numbers are determined by the doubiss. A single frequency electromagnetic field of a cavity can

resonance condition. For the lowest symmetric modes in &e represented as

cylindrical cavity (TEyy and TEy) it gives Ny;=2.76

X 1072LA? and Ng,=5.2x 10 2L\2. (In a similar manner ) o A o

one can also calculate the norms of the modes in coaxial E=ReAEe£'“"), H=RgAHg£'""),
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where A is the field amplitude and functiongy(r) and Wwherea is the Larmor radiusg=[Qd7’ + ¢ is the gy-

HL(r) describe the spatial distribution of, respectively, thefoPhase(l is the cyclotron frequency;=t—t is the transit
electric and magnetic fields. These functions can be exime for an electron entering the cavity at the instgpiand
pressed via the potential functig(), which in turn can be X andY are transverse coordinates of the guiding center, the

represented in a weakly irregular cylindrical cavity dagr) components of functions; and G, determined by Eqs.

N 20 ) (A3) and (A4), respectively, can be defined as
=W(r,)f(z). Here,¥(r,) is the membrane function that
obeys the Helmholtz equatiak, ¥ + kf‘PzO with the cor-
responding boundary condition arfifiz) describes the axial Gl,,=i2 Jn(p)L,
structure of the resonator field. In these notations the fields of n
any TE mode can be represented as

n) —in@ A9
BL_K_p € 1 ( a-)

1 .
sk (1 di Gro=—— 2 Ji(p)Lae ", (A9b)
ES:k_Z[VL\I,XZO:Ifa Hs=i \IffZO—Fk—le\I’d—z . n

L g
(A1) G,,=0 (A9
1z— Y% C)

The equation for electron motion can be written in nor-

malized variablez’ = wz/c, p’=p/mc, A'’=eAmcw, u B Zine

=eHy/mcw (primes will be omitted belowas Gar=— p En: nJ,(p)L,e” ", (A9d)
dp P - 1 (L L df .
—tul —Xze|=— = ot +Gy |- I i
az Hp, %7 B, Re{Ae (Glf ©2 dz)} Goy= 22 S )Ly ™, (A%)

(A2) o
Here, functionsél andG,, describing the spatial structure iB, , ing
of the rf Lorentz force acting on electrons, in accordance Gap=——— ; Jn(p)Le™ ™7, (A9f)

with Eq. (A1), are equal to

.1 . . L Here,p=k, a is the Larmor radius normalized to the trans-
Gi=— [V, ¥XZy]+iW[BX20], (A3)  verse wave number.
Now these expressions for the componenté@fand Gz
i L can be substituted into the right-hand side of &) and
Go="z [BXV, V] (A4)  then this equation can be averaged over fast electron gyra-
tions. To do this it is also necessary to specify the axial
tok=wlc, Bzz;/c is the electron velocity normalized to the for the cycllotron resonance condltlonslgwen .by EEJ Be- .

, i , = low, we will consider the resonator with a sinusoidal axial
speed pf light and coordinates in the gradi&nt are also  fa1q structure f(z)=sin(7zL)=sin(h? where h=k,/k
normalized tow/c. _ o _ =I\/2L is the axial wave number normalizedko Our con-

_ The membrane functio” (when it is an analytic func-  giqeration will be focused on the most practical case of the
tion) can be represented at any point with transverse coordisyciotron resonance with the forward wave component of
natesX andY as the superposition of harmonics of an angu-s standing wave at the fundamental harmonic and with the

lar variable: opposite wave component at the second harmonic, although
the formalism used can be applied for arbitrary resonance.
T=> W, (X,Y,r)e " (A5)  Corresponding cyclotron resonance conditions can be written

n in normalized variables as

In Eq. (A5) it is assumed that we use the reference frame
with polar coordinates and 6 the center of which is located
at the point K,Y). As shown by Yulpatoy21], the coeffi-
cients¥, in Eqg. (A5) can be represented as

1-hB,~uy, 1+hB,=2uy. (A10)

From Eg.(A10) one can readily derive the relation between
h and B, required for the double resonanded,~1/3, as

¥,=J,(kr)Ly(X,Y), (A6)  Wwell as other relations discussed in the Introduction. Using
these cyclotron resonance conditions one can average the rf
where Lorentz force,
BN A 1 . df
Ln— ; ﬁ+| W \P(X,Y) (A?) E=——R Aelw'[ Glf+GZ_ ,
B dz
Correspondingly, for an electron with transverse coordi- ]

nates over fast electron gyrations and get as a result only two terms

proportional to slowly variable phases;=wt—k,z— 4,
x=X+a cosd, y=Y+asind, (A8) = wt+k,z—26:



PRE 58 DOUBLE RESONANCE IN CYCLOTRON RESONANCE MASERS 1009

- 1 ) . n _ .,
(F)=~ Re{iA[€'"4(G,~i1hG,), Jn=1(p)= = In(p) + In(p),
2P, p
—e'%2(G;+ihG,),]}. (A11)  and second, the relation
Here, the angular brackets denote the averaging over fast 1 (9 Sd\ (a9 9
gyrations(these brackets will be omitted belpwand indices Lovatlna=— | ox F1 o9 ) Flox 1 gy/ [bn
“1” and “2” in ( G;¥ihG,) denote corresponding compo-
nents in the superpositiod, (G, FihG,),e "’ _
Using Eq.(A8) for transverse coordinates of electrons and _E ay L
representing the transverse components of their momentum K d n
as aX
Px=—Pp. sind, py=p, cosd Also note that using the condition of the double resonance

one can express in E§A14) the components of the wave

gne can derive by applying the Van der Pol method for eIeCvector via the components of initial electron velocity:

tron momentum and coordinates of guiding centers the fol-

lowing set of equations: he 1 8 o W
d d d T3fFo T '
oFi b= F gi=F, (A12 Pao
It is also expedient to augment E¢8.12) and(A13) with
and the equation for the normalized electron enefgy
dX dy dy _ B 9, 0
pg=—Fy #g=F (A13) 4z~ 2xB, Re(iA[J1(p)L1€""1—5(p)L €' 2]}

(A15)

Here the components of the rf Lorentz force averaged

over fast gyrations, in accordance with E489) and (A11), As follows from the equations for electron energy and axial
are equal to momentum, in the case of the double resonance the autoreso-

nance integral is no longer valid. Recall that in the case of
1 _ _ the resonance with the forward wave it has the fois,23
FGZW Re[iA[J](p)L,e1—235(p)L,e'¥2]}, p,—hy=const and for the resonance with the opposite wave
z (Al4a) [14,24, p,+hy=const.

In the case of the double resonance it is also impossible to
1 derive the same simple relation between the radial drift of
Fo=-— 33 2. Re(A[[pdi(p)]’ Llelﬁl_[pjz(p)] L2e”92]} eleptron guiding centgrs and changes_ in the' eIecFron energy

as in the case of a single resonanCkhis relation, first de-

(A4b) rived by Yulpatov for gyrotron oscillators, was then given
h for gyro-traveling wave tubes in Ref22].) Now, after rep-
FZ:Z P IA[J}(p)L1€ P14 J)(p)L e 2]}, resenting the coordinates of the guiding centers Are
Kpz =R, cosy, Y=Ry cosy, one can derive foRy the follow-
(Al40)  ing equation:
B, alq o l, ] dR, 8 ,
=_ 1—]! i 97 _ L ; — ’ 9
Fv="2eg, RIA P 57 o) Ty €[ Ro 07 = 2xup, RAAL(LF ML, Ji(p)e! ™
(Al4d _
. —(2¥m)L,Jd5(p)e" 2]} (A16)
_ B. ’ Ly %y _ 7! dLa i 9 . . .
Fx=— 215, R A_Jl(P) ox &t da(p) et So, the difference in resonant harmonic numpiét for the

(Algg  first term in the right-hand side and “2" for the last teym
makes the right-hand side of this equation different from the

Note that, as was done by Yulpatov for gyrotron oscilla-right-hand side of Eq(A15) for y. However, we can esti-
tors operating at frequencies near the cutsfe also Ref. mate the effect of each wave on the radial drift separately

[22] for operation at traveling wavgswe used in derivation and this leads us to the conclusion that was done in[R&f.
of the expression foF, the Bessel equation for a single resonance: when a number of electron orbits in
T , electron guiding centers is negligibly small. Recall that this
n(p)==[pda(p)] condition, N>1, is also necessary for averaging the equa-
and in derivation of the expressions fég andF,, first, the ~ we will not take into account the drift of electron guiding
recurrent relation centers.

) the interaction region is larg&y>1, the radial drift of the
n
o)
tions for electron motion over fast gyrations. Therefore, later
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