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Double resonance in cyclotron resonance masers

G. S. Nusinovich and J. Zhao
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511

~Received 1 December 1997; revised manuscript received 23 February 1998!

In many cyclotron resonance masers a beam of gyrating electrons excites standing waves in resonators. Such
waves can be represented as a superposition of forward and backward waves that have opposite Doppler shifts
of the operating frequency in the reference frame moving with electrons. Correspondingly, for certain axial
wave numbers both forward and backward waves can be in cyclotron resonance with gyrating electrons but at
different cyclotron harmonics. The theory describing the interaction between electrons and the resonator field
in the case of such a double resonance is developed. It is shown that this double resonance can be beneficial
when the device operates at symmetric modes while in the case of operation at nonsymmetric modes it always
lowers the efficiency.@S1063-651X~98!02407-6#

PACS number~s!: 52.75.Ms, 84.40.Ik
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I. INTRODUCTION

Cyclotron resonance masers~CRMs! are known as pow-
erful sources of coherent millimeter- and submillimete
wave radiation@1,2#. The most advanced group of CRMs a
gyrotrons or gyrodevices@3#. Currently, free-running gyro-
tron oscillators are widely used for electron cyclotron plas
heating and current drive in controlled fusion reactors~see,
e.g., Refs.@4# and @5#! and for material processing@6#. Gy-
roklystrons driven by relativistic electron beams are un
development for future~TeV scale! linear colliders @7#.
Weakly relativistic gyroklystrons operating at voltages b
low 100 kV have been developed for radar applications@8–
10#. There is also remarkable progress in the developmen
wideband gyro-traveling-wave tubes~see Ref.@11# and ref-
erences therein!.

In the process of this development practically all of t
most important issues for gyrotron operation have been s
ied theoretically. Some such results in the theory of wea
relativistic gyrotrons can be found in Refs.@1#, @12#, and
@13#. ~For recent progress in this field see biennial spe
issues on high-power microwave generation of the IE
Transactions on Plasma Science; the latest issue is m
tioned in Refs.@5# and @7#.! The fundamentals in the theor
of relativistic CRMs are given in Ref.@14#. Recent progress
is reviewed in Ref.@15#; in particular, Ref.@15# briefly men-
tions one special case of interaction of gyrating electr
with a resonator field at two cyclotron harmonics simul
neously, in contrast to conventional cyclotron resonance
only one harmonic.

To explain this case let us consider a resonator field w
a sinusoidal axial structuref (z)5sin(lpz/L); here l is the
axial index andL is the resonator length. This field can b
represented as the superposition of two opposite waves
the axial wave numberskz56 lp/L. Substituting these axia
wave numbers into the cyclotron resonance condition

v2kzvz.sV ~1!

~where v and V are, respectively, the wave and cyclotro
frequencies,vz is the electron axial velocity, ands is the
cyclotron resonance harmonic number!, one can readily find
that both of the opposite waves may be in resonance w
PRE 581063-651X/98/58~1!/1002~9!/$15.00
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electrons: the forward wave is at thesth harmonic while the
opposite one is at the (s11)th or higher harmonic. This cas
is illustrated in Fig. 1. Such an operation occurs when
ratio of the resonator lengthL to the wavelengthl relates to
the axial indexl as

L

l
5

2s11

2
bz0l . ~2!

Herebz0 is the initial axial velocity of electrons normalize
to the speed of light. The corresponding Doppler upshift
the operating frequency with respect to the cyclotron f
quency is

v

V
5

2s11

2
. ~3!

Note that the condition of the double resonance given by
~2! can be realized in the case of fast waves (kz5 lp/L
,v/c) only when the electron axial velocity is larg
enough:

FIG. 1. Dispersion diagram illustrating the double resonance
one resonator mode formed by two traveling waves with an elec
beam at two cyclotron harmonics.
1002 © 1998 The American Physical Society
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PRE 58 1003DOUBLE RESONANCE IN CYCLOTRON RESONANCE MASERS
bz0.
1

2s11
. ~4!

For the simplest case of the forward wave interaction at
fundamental harmonic (s51) Eqs.~2!–~4! are reduced, re-

spectively, toL/l5( 3
2 )bz0l , v/V5 3

2 , andbz0. 1
3 .

It is expedient to recall that a gyrating electron can lo
all of its kinetic energy in the process of interacting with
electromagnetic wave when the axial phase velocity of
wave normalized to the speed of light is equal to@15#

F ~11a2!~g021!

g011
G 1/2

.

Hereg0 is the initial energy of the electron normalized to t
rest energy anda5p'0 /pz0 is the ratio of the initial compo-
nents of the electron momentum. As one can easily find,
condition of complete deceleration of one electron is con
tent with the condition of the double resonance,L/l

5( 3
2 )bz0l , when aopt

2 5213/g0 and g0. 3
2 . The latter im-

plies an operation at voltages above 250 kV. Note that
condition of the double resonance at fast waves,bz0. 1

3 , for
a5aopt meansg0. 4

3 , i.e., voltages above 150 kV. Forbz0
. 1

3 , Eq. ~2! givesL/l. l /2, which in principle can be real
ized at any axial indexl . Note that these simple estimate
allow one also to evaluate the number of electron orbits
the interaction space,N5VT/2p, where T5L/vz0 is the
electron transit time through the resonator. As follows fro
Eqs. ~2! and ~3!, N5 l , i.e., under conditions of the doubl
resonance the number of electron orbits is equal to the a
index of the resonator mode.

This simple qualitative analysis indicates some spec
features of the double resonance at different harmonics
may occur in CRMs in the process of interacting with o
resonator mode. The theory of this phenomenon is develo
in this paper, which is organized as follows. In Sec. II
general formalism is described~the derivation of correspond
ing equations is given in the Appendix!. In Sec. III the re-
sults are presented and discussed. Section IV contains
summary.

II. GENERAL FORMALISM

As will be shown in the Appendix, the electron motion
the case of the double resonance at two different cyclo
harmonics can be described by the following equations:

dp'

dz
5

1

3kbz
Re$ iA@J18~r!L1eiq122J28~r!L2eiq2#%, ~5!

du

dz
2

m

pz
5

1

3kbzp'

Re$A@@rJ18~r!#8L1eiq1

2@rJ28~r!#8L2eiq2#%, ~6!

dpz

dz
5

hb'

2kbz
Re$ iA@J18~r!L1eiq11J28~r!L2eiq2#%, ~7!

dg

dz
5

b'

2kbz
Re$ iA@J18~r!L1eiq12J28~r!L2eiq2#%. ~8!
e

e
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Here, the components of electron momentum are norm
ized tomc, the axial coordinatez is normalized tov/c, the
resonator field amplitudeA is normalized toe/mcv, k andh
are, respectively, transversek' and axialkz wave numbers
normalized tok5v/c, m is the ratio of the nonrelativistic
cyclotron frequency to the operating frequency,r5k'a is
the Larmor radius of electrons normalized tok' ~r can also
be redefined askp' /m!, slowly variable phasesq15vt
2kzz2u and q25vt1kzz22u describe the departure o
the forward and opposite waves, respectively, from the ex
cyclotron resonance, andu is the electron gyrophase. Facto
L1 and L2 , to be discussed in the Appendix, describe t
transverse structure of the Lorentz force with which, resp
tively, the forward and opposite waves act on electrons
the case of a thin annular electron beam interacting with
TEm,p mode of a cylindrical cavity

Ls5Jm7s~k'Rg!e i ~m7s!c. ~9!

HereRg andc are polar coordinates of electron guiding ce
ters. Certainly, one from Eqs.~5!, ~7!, and~8! can be elimi-
nated sinceg2511p'

2 1pz
2. We presented above all thre

just for the completeness of our consideration. In the abse
of electron velocity spread at the entrancep' , pz , and g
obey the following boundary conditions:p'(0)5g0b'0 ,
pz(0)5g0bz0 , g(0)5g0 . The boundary condition for the
gyrophaseu in the gyromonotron isu(0)5u0 where the ini-
tial gyrophaseu0 is homogeneously distributed from 0 to 2p.
In any gyrodevice with electron prebunching the gyropha
at the entrance to the output cavity depends on the prebu
ing history. This issue will be specified below.

The interaction efficiency can be determined as

h5
1

2p E
0

2p H 1

2p E
0

2p g02g~L !

g021
du0J dc. ~10!

Here the averaging overu0 means the averaging over initia
gyrophases in one beamlet, the averaging overc means the
averaging over all beamlets having different azimuthal co
dinates of guiding centers.

Using Eq.~9! one can introduce the normalized amplitu
F5 iAuL1u/2k and phaseq1

85q12(m21)c. ~Without a
lack of generality we will consider the TE mode rotating
the same azimuthal direction as the electron gyration. In
case of a symmetric TE0,p mode this does not play any role!
Correspondingly, in Eqs.~5!–~8! the ratio uL2u/uL1u can be
denoted asR and the phase of the last terms in the right-ha
sides of Eqs.~5!–~8! can be rewritten as

u285q22~m22!c53kzz2vt12q181mc

53hbz2E
0

z dz8

bz
12q181mc. ~11!

Equation~11! shows that in the case of operating at symm
ric (m50) modes the second averaging in Eq.~10! is redun-
dant since all beamlets are in identical conditions while
operation at nonsymmetric modes it can be very importa

In new notations Eqs.~5!–~8! can be rewritten as
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1004 PRE 58G. S. NUSINOVICH AND J. ZHAO
dp'

dz
5

2

3bz
Re$F@J18~r!eiq122RJ28~r!eiq2#%, ~12!

du

dz
2

m

pz
5

2

3bzp'

Re$2 iF @@rJ18~r!#8eiq1

2R@rJ28~r!#8eiq2#%, ~13!

dpz

dz
5h

b'

bz
Re$F@J18~r!eiq11J28~r!Reiq2#%, ~14!

dg

dz
5

b'

bz
Re$F@J18~r!eiq12RJ28~r!eiq2#%. ~15!

Here, the primes forq1 andq2 are omitted. To make this se
of equations self-consistent we should replace Eq.~13! for u
by the following equation forq1 :

dq1

dz
5

1

bz
H d1

1

3 S 12
bz

bz0
D1mS 1

g0
2

1

g D J
1

2

3bzp'

Re$ iF @@rJ18~r!#8eiq1

2R@rJ28~r!#8eiq2#%, ~16!

whered512hbz02m/g0 is the initial mismatch of the cy-
clotron resonance for the forward wave and take into acco
that the relation betweenq1 andq2 is given by Eq.~11!.

We can also go one step further and, assuming that
argumentr in Bessel functions is small enough, expa
these functions asJn(r).(1/n!)(r/2)n. Then, after intro-
ducing F85F/2, R85kR ~primes are omitted below!, we
reduce Eqs.~12!, ~14!, ~15!, and~16! to

dp'

dz
5

1

bz
ReFFS 2

3
eiq12Rb'eiq2D G , ~17!

dpz

dz
5h

b'

bz
ReFFS eiq11

3

4
Rb'eiq2D G , ~18!

dg

dz
5

b'

bz
ReFFS eiq12

3

4
Rb'eiq2D G . ~19!

dq1

dz
5

1

bz
H d1

1

3 S 12
bz

bz0
D1

2

3 S 12
g0

g D
1

1

p'

ReF iF S 2

3
eiq12Rb'eiq2D G J . ~20!

These equations contain the same three parameters
describe a single-resonance interaction with one reson
mode~see, e.g., Ref.@1#!: the rf field amplitudeF, the cy-
clotron resonance mismatchd, and the resonator lengthL.
They also include the parameterR, which determines the
ratio of coupling coefficients to the opposite and forwa
waves, and the initial components of the electron veloc
b'0 and bz0 @g05(12b'0

2 2bz0
2 )21/2#. Note that, as fol-
nt

he

hat
tor

,

lows from the condition of double resonance,h'1/3bz0 and
L is determined, in accordance with Eq.~2!, by bz0 and the
axial index of the mode,l .

III. RESULTS

The double resonance interaction was studied for
500-kV electron beam with the orbital-to-axial velocity rati
a51.5. The interaction with modes having two, three, a
four axial variations~l 52, 3, and 4! was analyzed for the
case of a nonprebunched electron beam and the case o
listic prebunching. The latter implies a weak modulation
electron energies in the first resonator followed by a lo
drift section in which this modulation causes significant o
bital phase bunching. Correspondingly, the boundary con
tion to Eq. ~19! for the electron energy was written a
g(0)5g0 and to Eq.~2! for the phase as

q1~0!5q01q sin q0 , ~21!

where the bunching parameterq ~see, e.g., Ref.@12#! in the
case of a nonprebunched beam is equal to zero. We anal
the operation at both symmetric (m50) and nonsymmetric
(mÞ0) modes. The interaction length was determined
Eq. ~2! for s51 and bz0 defined byVb and a specified
above:L/l.0.72l . The efficiency given by Eq.~10! was
calculated as a function of the field amplitudeF for different
values of the ratio of coupling coefficient,R, and for eachF
andR the cyclotron resonance mismatchd was optimized for
maximizing the efficiency.

Results are presented in Figs. 2 and 3, which correspo
respectively, to two and three axial variations~l 52 and 3! of
the resonator mode. Parts~a!, ~c!, and~e! in these two figures
correspond to operation at the symmetric mode while ca
~b!, ~d!, and~f! correspond to nonsymmetric modes@the lat-
ter set of figures implies double averaging in Eq.~10! while
the former corresponds to the single averaging#. Parts~a! and
~b! correspond to the nonprebunched electron beam, part~c!
and ~d! correspond to the bunching parameterq51, and
parts~e! and~f! correspond toq51.8. ~This value is close to
the optimum for a one-cavity prebunching for operation
the fundamental resonance; see, e.g., Refs.@1# and @12#.!

The results presented in Figs. 2 and 3 demonstrate th
the case of operation at symmetric modes the double r
nance can improve the efficiency when the coupling to
opposite wave is not too strong (R50.2– 0.4). This effect is
better pronounced at small values of the bunching param
~q50 and 1.0!. For the optimum bunching parameter (q
51.8) the maximum efficiency for the nonzeroR’s is ap-
proximately the same or smaller than forR50. The maxi-
mum efficiency of interaction of the prebunched (q51.8)
electron beam with modes having two and three axial va
tions is, respectively, 38% and 45%. We also studied
operation at the mode with four axial variations and fou
that in this case the maximum efficiency is 46%. Since
maximum efficiency in the last two cases~l 53 and 4! was
approximately the same, we did not analyze the interac
with modes having a larger (l .4) number of axial varia-
tions. Relatively small changes in the efficiency due to
additional resonance can be explained by the fact that, as
calculations showed, the parameters optimal for the effic
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FIG. 2. Operation at a mode with two axial variations:~a!, ~c!, and~e! correspond to the symmetric TEm,p mode (m50); ~b!, ~d!, and
~f! correspond to nonsymmetric (mÞ0) modes. The bunching parameters for~a! and~b!, ~c! and~d!, and~e! and~f! are equal to 0. 1.0, and
1.8, respectively.
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interaction with the backward wave differ significantly fro
the parameters optimal for the forward wave interaction.

The double resonance in the case of operation at nons
metric modes, as follows from cases~b!, ~d!, and~f! shown
in Figs. 2 and 3, always only reduces the efficiency in co
parison with a single resonance interaction (R50). More-
over, at large amplitudes of the resonator field it causes
appearance of reflected particles since some electrons
their axial momentum completely in the process of decele
tion. Certainly, the absolute values of the efficiency can
enhanced when two or more prebunching cavities are u
~see, e.g., Ref.@16#!.
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The effect of electron velocity spread on the efficiency
double resonance interaction was also studied. We con
ered the case when a monoenergetic electron beam h
spread in pitch ratiosa’s, which is typical for the beams
formed by magnetron injector electron guns. This spread
modeled by a top hat distribution

f ~a!5 H const for a02)Da<a<a01)Da
0 for a,a02)Da, a.a01)Da,

where the factor) ensures thatDa is the rms spread in
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FIG. 3. Operation at a mode with two axial variations:~a!, ~c!, and~e! correspond to the symmetric TEm,p mode (m50); ~b!, ~d!, and
~f! correspond to nonsymmetric (mÞ0) modes. The bunching parameters for~a! and~b!, ~c! and~d!, and~e! and~f! are equal to 0. 1.0, and
1.8, respectively.
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pitch ratio. The results of calculations done for the 10
spread have shown that a double resonance operation at
metric modes is as sensitive to the velocity spread as a si
resonance interaction. For instance, the efficiency of
double resonance operation at a mode with two axial va
tions excited by a nonprebunched electron beam decre
from 24% to 19%@R50.2; cf. Fig. 2~a!# while the efficiency
of the single resonance operation in the same device
R50 decreases from 21.2% to 15.6%. On the contrary,
double resonance operation at nonsymmetric modes is m
more sensitive to the spread: for the same parameter~l
52, q50, R50.2! the 10% spread decreases the efficien
from 19.1% to 12.4%.
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Now let us discuss the relation between the optimal fi
amplitudeF ~which can be found from Figs. 2 and 3! and the
rf breakdown field. The normalized amplitudeF used in Eqs.
~17!–~20! is equal to

J1~k'Rg!
1

4k

eA

mccv
, ~22!

and its optimal value, as follows from Figs. 2–4, is on t
order of 0.1.~Depending on other parameters, it varies a
proximately from 0.05 to 0.15.! The normalized axial wave
numberh in the case of the double resonance with a 500 k
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a51.5 electron beam is equal to 0.694 (h.1/3bz0). Corre-
spondingly, the normalized transverse wave numberk
5A12h2 is equal to 0.72. Let us also assume that the be
radiusRg corresponds to the maximum of the Bessel fun
tion J1(k'Rg).0.58. This gives for the last term in Eq.~22!
eA/mccv.0.5. From here the optimal field amplitud
equals

Aopt~MV/m!.
160

l~cm!
. ~23!

At high enough frequency (f *10 GHz) the rf breakdown
field in the continuous wave~cw! regime can be approxi
mated~see, e.g., Ref.@17#! by a simple expression:

Ebr,cw~MV/m!.25Af ~GHz!.
137

Al~cm!
. ~24!

From here it follows that the optimal amplitude does n
exceed the breakdown field only at wavelengths longer t
1.36 cm. Note, however, that in many experiments it w
shown that in pulse operation the breakdown field is mu
larger than in the cw regime. This allowed Wilson@18# to
approximate the dependence of the breakdown field on
pulse durationt ~ms! by the following equation:

Ebr5Ebr,cwS 11
4.5

t1/4D . ~25!

So, for instance, fort&1 ms ~which is a typical pulse dura
tion of microwave sources intended for driving the line
colliders! the breakdown field is more than five times larg
than that given by Eq.~24!. This pushes the boundary of th
wavelength region of stable operation to short millimete
Note also that near the wall surface the electric field of sy
metric modes is much weaker than in the interaction reg
that mitigates the breakdown problem.

For practical reasons, it makes sense also to estimate
resonatorQ factor required for the generation of a certa
microwave power,Prf , with the efficiency calculated above
Let us assume that the device should produce a 100
output power, which is the goal of the present program
the development of relativistic gyroklystrons for future line
colliders @7,19#. ~For 500 kV beam voltage and 40% effi
ciency it implies a 500 A beam current.! In the steady state
the rf power extracted from the beam is equal to the powe
microwave losses (v/2Q)A2N, whereN is the norm of the
operating mode and the losses are mainly determined by
diffraction of radiation into the output waveguide. Therefo

Q5
v

2

A2N

Prf
.

To calculate the norm, one should take into account the
pressions for the electric and magnetic fields given in
Appendix by Eq.~A1! and the fact that the normalized axi
and transverse wave numbers are determined by the do
resonance condition. For the lowest symmetric modes
cylindrical cavity ~TE01l and TE02l! it gives N0152.76
31022Ll2 and N0255.231022Ll2. ~In a similar manner
one can also calculate the norms of the modes in coa
m
-

t
n
s
h

e

r
r
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n

the
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f
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,

x-
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cavities@20#.! Then, using Eq.~23! for the optimal field am-
plitude one readily gets the following estimates for the
quiredQ factors:Q01l.77l , Q02l.145l .

Before closing this section, let us also briefly discuss
issue of mode competition. Certainly, in the case of ope
tion at the lowest symmetric modes the spectrum of mo
differing in transverse indices is well rarefied~in contrast to
high-power, long-pulsed gyrotron oscillators; see, e.g., R
@4#!. However, the issue can be a competition betwe
modes having the same transverse structure but diffe
axial indicesl when l is large. To evaluate the frequenc
separation between such modes let us consider the case
ied above: a mode with three axial variations is excited b
500 kV, a51.5 electron beam. As one can find using E
~2!, the frequency of this mode is 1.39vc ~wherevc is the
cutoff frequency! while the frequencies of modes with tw
and four axial variations are equal to 1.19vc and 1.63vc ,
respectively. So, the frequency of the closest mode is ab
14% apart from the operating frequency. At the same tim
the self-excitation band being estimated as (p/2)T21 @1#
~whereT is the electron transit time introduced in Sec. I! is
smaller than 6%. This allows us to conclude that the mo
competition should not be a severe problem for double re
nance operation.

IV. SUMMARY

The formalism describing the simultaneous double cyc
tron resonance interaction at different harmonics between
beam of gyrating electrons and one resonator mode was
veloped. It was shown that in the case of operation at a
muthally symmetric modes the efficiency of the double re
nance interaction can be higher than that in the standard
of a single resonance interaction. For instance, for an o
mally prebunched electron beam~one-cavity prebunching! it
can reach 46%. In contrast, in the case of operation at n
symmetric TEm,p modes~with mÞ0! the additional reso-
nance plays a destructive role only, especially when the
locity spread is significant. The estimates show that
optimal amplitude of the resonator field required for efficie
operation is on the order of the breakdown field. Nevert
less, at least for a short pulse operation, the optimal field
all reasonable frequencies is smaller than the breakd
limit.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of E
ergy, Division of High Energy Physics. The authors wish
thank Dr. S. Tantawi for his insightful comments.

APPENDIX

Here, we derive equations for electron motion in CRMs
the case of double resonance at different cyclotron harm
ics. A single frequency electromagnetic field of a cavity c
be represented as

EW 5Re~AEW se
ivt!, HW 5Re~AHW se

ivt!,
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where A is the field amplitude and functionsEW s(rW) and
HW s(rW) describe the spatial distribution of, respectively, t
electric and magnetic fields. These functions can be
pressed via the potential functionF(rW), which in turn can be
represented in a weakly irregular cylindrical cavity asF(rW)
5C(rW') f (z). Here, C(rW') is the membrane function tha
obeys the Helmholtz equationD'C1k'

2 C50 with the cor-
responding boundary condition andf (z) describes the axia
structure of the resonator field. In these notations the field
any TE mode can be represented as

EW s5
k

k'
2 @¹W 'C3zW0# f , HW s5 i S C f zW01

1

k'
2 ¹W 'C

d f

dzD .

~A1!

The equation for electron motion can be written in no
malized variablesz85vz/c, p85p/mc, A85eA/mcv, m
5eH0 /mcv ~primes will be omitted below! as

dpW

dz
1mF pW

pz
3zW0G52

1

bz
ReH AeivtS GW 1f 1GW 2

d f

dzD J .

~A2!

Here, functionsGW 1 andGW 2 , describing the spatial structur
of the rf Lorentz force acting on electrons, in accordan
with Eq. ~A1!, are equal to

GW 15
1

k2 @¹W 'C3zW0#1 iC@bW 3zW0#, ~A3!

GW 25
i

k2 @bW 3¹W 'C#. ~A4!

Herek5k' /k is the transverse wave numberk' normalized
to k5v/c, bW 5vW /c is the electron velocity normalized to th
speed of light and coordinates in the gradient¹W ' are also
normalized tov/c.

The membrane functionC ~when it is an analytic func-
tion! can be represented at any point with transverse coo
natesX andY as the superposition of harmonics of an ang
lar variableu:

C5(
n

Cn~X,Y,r !e2 inu. ~A5!

In Eq. ~A5! it is assumed that we use the reference fra
with polar coordinatesr andu the center of which is located
at the point (X,Y). As shown by Yulpatov@21#, the coeffi-
cientsCn in Eq. ~A5! can be represented as

Cn5Jn~kr !Ln~X,Y!, ~A6!

where

Ln5F1

k S ]

]X
1 i

]

]YD Gn

C~X,Y!. ~A7!

Correspondingly, for an electron with transverse coor
nates

x5X1a cosu, y5Y1a sin u, ~A8!
x-

of

-

e

i-
-

e

i-

where a is the Larmor radius,u5*0
tVdt81w is the gy-

rophase,V is the cyclotron frequency,t5t2t0 is the transit
time for an electron entering the cavity at the instantt0, and
X andY are transverse coordinates of the guiding center,
components of functionsGW 1 and GW 2 determined by Eqs.
~A3! and ~A4!, respectively, can be defined as

G1,r5 i(
n

Jn~r!LnS b'2
n

kr De2 inu, ~A9a!

G1,u52
1

k (
n

Jn8~r!Lne2 inu, ~A9b!

G1,z50, ~A9c!

G2,r52
bz

kr (
n

nJn~r!Lne2 inu, ~A9d!

G2,u5
ibz

k (
n

Jn8~r!Lne2 inu, ~A9e!

G2,z52
ib'

k (
n

Jn8~r!Lne2 inu, ~A9f!

Here,r5k'a is the Larmor radius normalized to the tran
verse wave number.

Now these expressions for the components ofGW 1 andGW 2
can be substituted into the right-hand side of Eq.~A2! and
then this equation can be averaged over fast electron g
tions. To do this it is also necessary to specify the ax
distribution of the fields since the Doppler term is importa
for the cyclotron resonance conditions given by Eq.~1!. Be-
low, we will consider the resonator with a sinusoidal ax
field structure f (z)5sin(lpz/L)5sin(hz) where h5kz /k
5 ll/2L is the axial wave number normalized tok. Our con-
sideration will be focused on the most practical case of
cyclotron resonance with the forward wave component
this standing wave at the fundamental harmonic and with
opposite wave component at the second harmonic, altho
the formalism used can be applied for arbitrary resonan
Corresponding cyclotron resonance conditions can be wri
in normalized variables as

12hbz'mg, 11hbz.2mg. ~A10!

From Eq.~A10! one can readily derive the relation betwe
h and bz required for the double resonance,hbz'1/3, as
well as other relations discussed in the Introduction. Us
these cyclotron resonance conditions one can average t
Lorentz force,

FW 52
1

bz
ReH AeivtS GW 1f 1GW 2

d f

dzD J ,

over fast electron gyrations and get as a result only two te
proportional to slowly variable phasesq15vt2kzz2u,
q25vt1kzz22u:
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^FW &52
1

2bz
Re$ iA@eiq1~GW 12 ihGW 2!1

2eiq2~GW 11 ihGW 2!2#%. ~A11!

Here, the angular brackets denote the averaging over
gyrations~these brackets will be omitted below! and indices
‘‘1’’ and ‘‘2’’ in ( GW 17 ihGW 2) denote corresponding compo
nents in the superposition(n(GW 17 ihGW 2)ne2 inu.

Using Eq.~A8! for transverse coordinates of electrons a
representing the transverse components of their momen
as

px52p' sin u, py5p' cosu

one can derive by applying the Van der Pol method for el
tron momentum and coordinates of guiding centers the
lowing set of equations:

dp'

dz
5Fu , p'

dw

dz
52Fr ,

dpz

dz
5Fz ~A12!

and

m
dX

dz
52Fy , m

dY

dz
5Fx . ~A13!

Here the components of the rf Lorentz force averag
over fast gyrations, in accordance with Eqs.~A9! and~A11!,
are equal to

Fu5
1

3kbz
Re$ iA@J18~r!L1eiq122J28~r!L2eiq2#%,

~A14a!

Fr52
1

3kbz
Re$A†@rJ18~r!#8L1eiq12@rJ28~r!#8L2eiq2

‡%,

~A14b!

Fz5
hb'

2kbz
Re$ iA@J18~r!L1eiq11J28~r!L2eiq2#%,

~A14c!

Fy52
b'

2kbz
ReH AFJ18~r!

]L1

]Y
eiq12J28~r!

]L2

]Y
eiq2G J ,

~A14d!

Fx52
b'

2kbz
ReH AFJ18~r!

]L1

]X
eiq12J28~r!

]L2

]X
eiq2G J .

~A14e!

Note that, as was done by Yulpatov for gyrotron oscil
tors operating at frequencies near the cutoff~see also Ref.
@22# for operation at traveling waves!, we used in derivation
of the expression forFr the Bessel equation

S r2
n2

r D Jn~r!52@rJn8~r!#8

and in derivation of the expressions forFx andFy , first, the
recurrent relation
st

m

-
l-

d

-

Jn61~r!5
n

r
Jn~r!7Jn8~r!,

and second, the relation

Ln116Ln215
1

k F S ]

]X
1 i

]

]YD7S ]

]X
2 i

]

]YD GLn

5
2

k H i
]

]Y
]

]X
J Ln .

Also note that using the condition of the double resona
one can express in Eq.~A14! the components of the wav
vector via the components of initial electron velocity:

h.
1

3
bz0 , k5

A9bz0
2 21

3bz0
.

It is also expedient to augment Eqs.~A12! and~A13! with
the equation for the normalized electron energyg:

dg

dz
5

b'

2kbz
Re$ iA@J18~r!L1eiq12J28~r!L2eiq2#%.

~A15!

As follows from the equations for electron energy and ax
momentum, in the case of the double resonance the autor
nance integral is no longer valid. Recall that in the case
the resonance with the forward wave it has the form@14,23#
pz2hg5const and for the resonance with the opposite wa
@14,24#, pz1hg5const.

In the case of the double resonance it is also impossibl
derive the same simple relation between the radial drift
electron guiding centers and changes in the electron en
as in the case of a single resonance.~This relation, first de-
rived by Yulpatov for gyrotron oscillators, was then give
for gyro-traveling wave tubes in Ref.@22#.! Now, after rep-
resenting the coordinates of the guiding centers areX
5Rg cosc, Y5Rg cosc, one can derive forRg the follow-
ing equation:

Rg

dRg

dz
5

b'

2kmbz
Re$ iA@~17m!L1J18~r!eiq1

2~27m!L2J28~r!eiq2#% ~A16!

So, the difference in resonant harmonic number~‘‘1’’ for the
first term in the right-hand side and ‘‘2’’ for the last term!
makes the right-hand side of this equation different from
right-hand side of Eq.~A15! for g. However, we can esti-
mate the effect of each wave on the radial drift separa
and this leads us to the conclusion that was done in Ref.@22#
for a single resonance: when a number of electron orbits
the interaction region is large,N@1, the radial drift of the
electron guiding centers is negligibly small. Recall that th
condition, N@1, is also necessary for averaging the equ
tions for electron motion over fast gyrations. Therefore, la
we will not take into account the drift of electron guidin
centers.
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